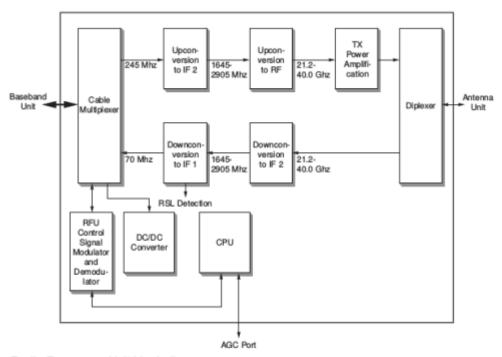
24 GHz-Transverter

Aus zwei Außeneinheiten einer ehemaligen Infrastruktur-Linkstrecke entstehen Transverter für das 24 GHz-Amateurfunkband. Wie schon beim Entwurf des 10GHz-Transverter wird auf ausreichende Frequenzstabilität und -genauigkeit wert gelegt.

Die Außeneinheit besteht aus folgenden Baugruppen:

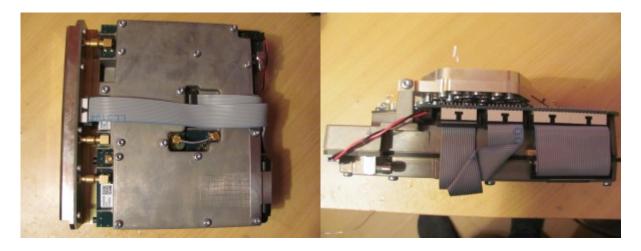

- Antenne
- Hohlleiter-Duplex-Filter
- 23 GHz-Transverter (LO-Verdreifacher, LNA, RX-Mischer, TX-Mischer, PA)
- I O
- RX-ZF-Transverter
- TX-ZF-Transverter
- RX/TX/Telemetrie-Multiplexer

Bis auf das Duplex-Filter und die ZF-Aufbereitung werden alle Komponenten (teilw. stark modifiziert) verwendet. In den frei gewordenen Platz soll ein 10 MHz-Quarzofen (vgl. GPS-Disziplinierte 10MHz-Referenz) untergebracht werden.

Da nur wenige Daten über die Baugruppen vorhanden sind, müssen sie komplett analysiert und dessen Funktionsweise rekonstruiert werden. Zu jeder Leiterplatte wird ein Schaltplan und eine Schnittstellenbeschreibung erstellt.

Baugruppe	Zustand	Bemerkung
23 GHz-Transverter	in Analyse	Spannungsversorgung unklar
Lokaloszillator	in Aufbau	Ansteuerung fehlt
Multiplexer	in Konzeption	
Mechanik	in Konzeption	

Übersicht



Radio Frequency Unit block diagram


Im Originalzustand der Außeneinheit wird das Sende- wie Empfangssignal zweimal in der Frequenz umgesetzt. Dem Handbuch sind folgende Daten zu entnehmen:

- TX-ZF 245MHz
- RX-ZF 70MHz
- RFU-ZF 1645-2905MHz
- Duplexabstand 1008MHz
- Abstimmbereich 600MHz
- Versorgungsspannungsbereich 20-70V
- WR-42 als Hohlleiterflansch

Die zwei vorhandenen Einheiten unterscheiden sich in der Duplexerkonfiguration (TX 22,0-22,6 GHz/RX 23,0-23,6 GHz und umgekehrt), sind aber ansonsten (hoffentlich) gleich.

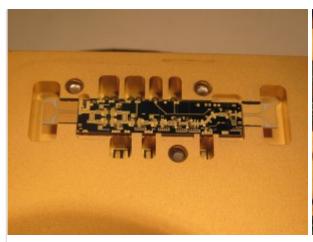
2025/12/19 07:56 3/12 24 GHz-Transverter

Die Baugruppen sind als kompakte Einheit miteinander verschraubt, ein Deckel bildet den Wetterschutz. Die ODU wird mittels einer Klemmhalterung am Hohlleiterflansch mit der Antenne verbunden.

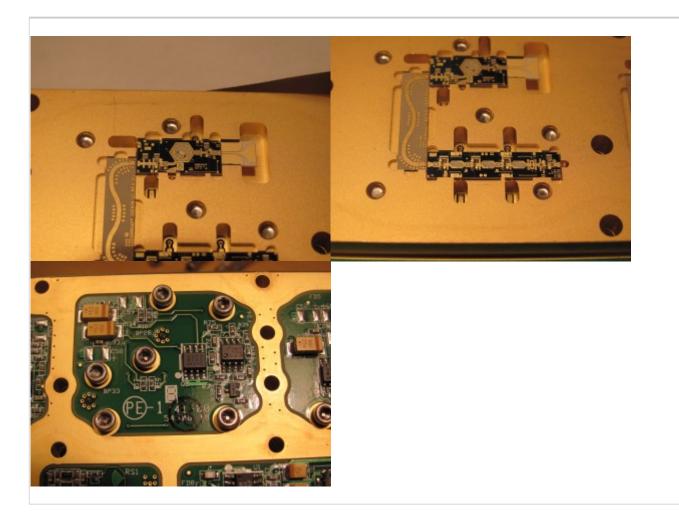
Untersuchung

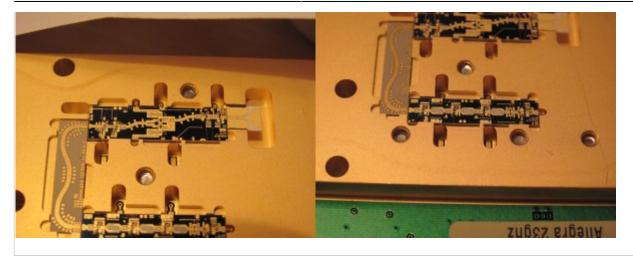
Die Eigenschaften der Außeneinheit sind nicht bekannt. So müssen zuerst die Systemparameter im Frequenzbereich der Linkstrecke (22,0 - 23,6 GHz) aufgenommen werden. Im Vergleich zu ggf, schlechteren Eigenschaften bei der Nutzfrequenz (24048 MHz) kann die Tauglichkeit von unterschiedlichen LO/ZF-Kombinationen evaluiert werden.

Sendereigenschaften


Es werden die Parameter der Vor- und Endstufe ermittelt. Zu messende Eigenschaften sind Verstärkung, Kompression (P1dB) und Intermodulationsverhalten.

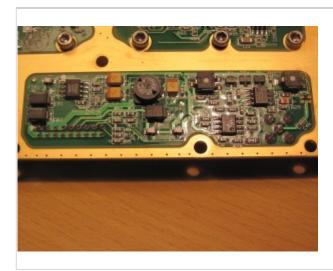
Der Messaufbau besteht aus dem Mikrowellenmodul, dem Lokaloszillator auf 8xxx MHz (TBD) und einem Signalgenerator im ZF-Bereich. Der Mischerausgang wird direkt mittels eines Koax-HL-Übergangs an den Spektrumanalysator angeschlossen. Beim Test der Endstufe wird der Mischer über 2 Koax-HL-Übergänge und einem Isolator angeschlossen, der Ausgang der PA wird über ein Dämpfungsglied mit dem Spektrumanalysator verbunden.


Empfängereigenschaften


Von Interesse sind Verstärkung, Empfängerrauschzahl und Spiegelfrequenzunterdrückung des Empfängers. Ein geeigneter Messaufbau wird evaluiert.

23GHz-Transverter

Das 8GHz LO-Signal wird verdreifacht und dann im Quadraturmischer mit dem Eingangssignal gemischt.

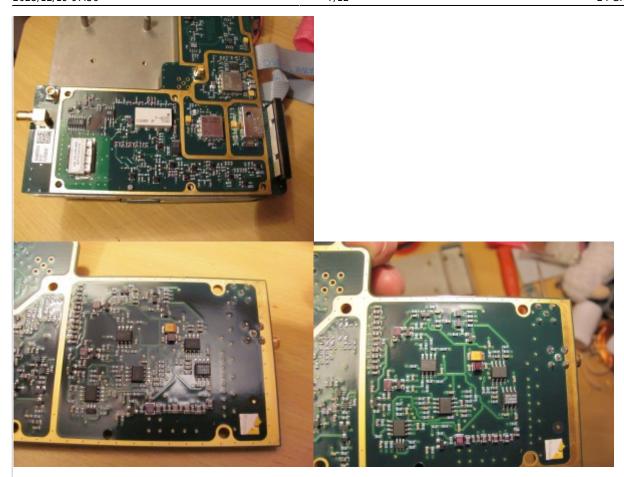


Die Ausgangssignale des Quadraturmischers werden mittels Hybrid-Koppler zusammengefasst, dieser sorgt für Spiegelfrequenzunterdrückung. Rechts ist die Spannungsaufbereitung für den Mischer platziert.

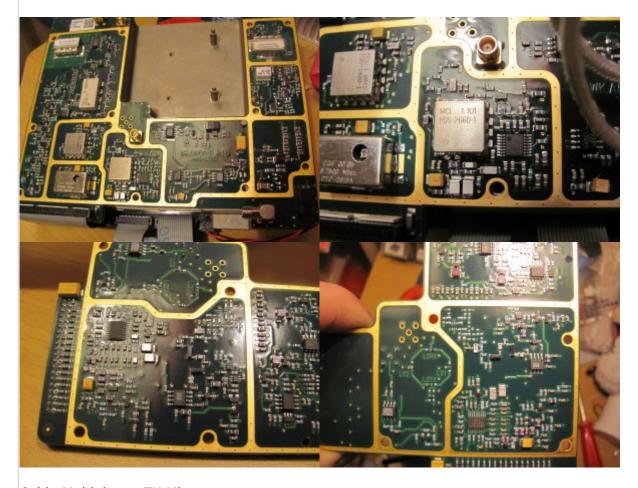
Der Hybrid-Koppler wird mit einem Anaren 11304-3 Hybrid-Koppler für 70cm ersetzt. Messwerte

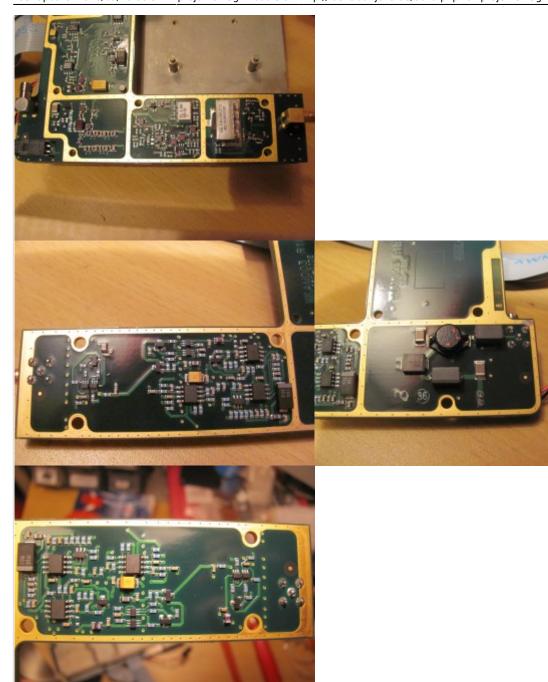
Das Empfangssignal landet auf der linken BMA-Buchse, für Isolation und breitbandige Anpassung sorgt ein MMIC-Verstärker gefolgt von einem Dämpfungsglied.

Die Stiftleiste verbindet diese Baugruppe mit dem Spannungsversorgungs-Modul. Es werden 2 positive und eine negative Spannung benötigt. Die übrigen Pins könnten Steuerleitungen vom Controller oder analoge I/Os sein.


Rechts ist der Sendeeingang (BMA-Steckverbinder) positioniert.

ZF-Board

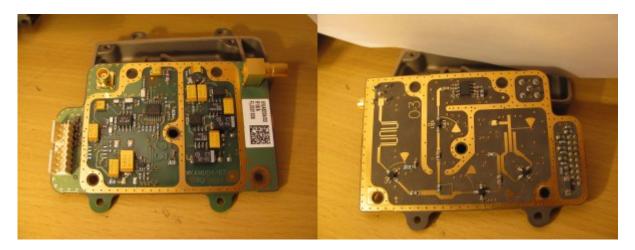

Das ZF-Board beinhaltet viele Baugruppen, die keine Verwendung mehr finden. Der mechanische Aufbau (abgeschirmte Kammern für jede Baugruppe) soll beibehalten werden. Im frei gewordenen Platz soll die LO-Ansteuerung und der Quarzofen untergebracht werden.


RX-Mixer, 1400MHz LO

2660MHz LO

Cable-Multiplexer, TX-Mixer

Clock Switch Hi/Lo-Band



2025/12/19 07:56 9/12 24 GHz-Transverter

Lokaloszillator

Der LO schwingt auf 8 GHz und basiert auf einem Microstrip-VCO, der mittels einer PLL (LMX2326) an eine externe Referenz gerastet werden kann.

Das Ausgangssignal des Oszillators wird mit einem unequal Wilkinson-Divider aufgeteilt. Das schwächere Signal dient als Anzapfung für die PLL. Da der PLL-Schaltkreis die 8GHz nicht direkt verarbeiten kann, teilt ein /4-Prescaler das Signal entsprechend runter.

Der Schaltplan wurde rekonstruiert. Die Schleifenfilterbandbreite beträgt ca. 30 kHz bei einer angenommenen 1 MHz PFD-Frequenz.

Stefan, DK3SB, hat die Abstimmt-Kennlinie ermittelt:

- 7920MHz @ 0V
- 8320MHz @ 5V
- Kvco = 80MHz/V

Zur Ansteuerung der PLL wird eine Leiterplatte entworfen, die einen MSP430 sowie 10 MHz Trimble-Quarzofen enthält. Es wird die Schleifenfilterbandbreite von 30 kHz beibehalten und als Frequenz (24048+432)÷3=8160 MHz gewählt. Dadurch könnte auch eine PFD-Frequenz von 10 MHz gewählt (verbessert den Noisefloor?) und eine aktives Schleifenfilter wäre auch nicht mehr notwendig.

Multiplexer

TODO

Spannungs- und Controllerboard

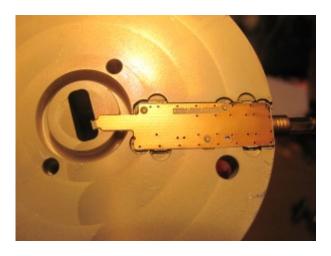
- μPD784216 MCU
- AT29C040A 4Mbit Flash
- X84641 EEPROM
- MAX510 DAC
- IS62C256 SRAM
- DS1721 Temperatursensor
- ADG431 Analogschalter
- 74HC139D 2-auf-4 Dekoder
- 2x MAX4167

Mechanik

Das aktuelle dichte Packmaß möchte beibehalten werden, die Höhe des Duplexers darf dabei von Koax-Relais, Filter und diversen HL-SMA-Übergängen nicht überschritten werden.

Antenne

Die Antenne ist ein Cassegrain-System mit Radom Andrew VHLP2-220.


- Frequenzbereich 21.2 23.6GHz
- Durchmesser 60cm
- Gewinn 41dBi@24GHz
- Öffnungswinkel(3dB) 1.4°
- F/B 66dB
- Rundhohlleiter als Hohlleiteranschluss

Der Hohlleiterflansch-Adapter der ODU dient zugleich als Anpassglied von Rund- auf Rechteckhohlleiter.

Diverses

Output Power Indicator

Es scheint, dass an der SMB-Buchse eine zur HF-Leistung proportionale Spannung zu messen ist. Leistungs-/Spannungskennlinie muss noch aufgenommen werden. Eine Anzeige der Ausgangsleistung am Transverter ist erstrebenswert. From:

http://loetlabor-jena.de/ - Lötlabor Jena

Permanent link:

http://loetlabor-jena.de/doku.php?id=projekte:23ghz-odu:start&rev=1474353144

Last update: 2016/09/20 06:32

