2025/10/19 01:16 1/7 10GHz-Transverter

10GHz-Transverter

Auf Grundlage der Transverterbaugruppe von VK3XDK entsteht ein portabel-fähiger Transverter, vorwiegend für Regenscattereinsatz. Als Steuersender kommt der FT-817 zum Einsatz, den Ausgang bildet eine Hornantenne, die in einem Spiegel positioniert werden kann. Besondere Anforderung an das System ist möglichst gute Frequenzstabilität und -genauigkeit. Diese wird durch einen Quarzofen gewährleistet.

Folgende Baugruppen werden benötigt:

- Transverter (Mischer, Verstärkung, Filterung)
- 1656 MHz PLL-LO mit 10MHz-Referenzeingang
- LO-Multiplier auf 9936 MHz
- Endstufenmodul für ~1W Ausgangsleistung
- HF-Umschaltung (Koax-Relais)
- ZF-Umschaltung (mit TX-Schluckwiderstand und RX-ZF-Verstärker)
- Sequencer (Spannungen und Relais steuern)

Zuerst wird ein Transverter aufgebaut, an dem das Design erprobt werden kann. Dessen Fortschritt ist in der folgenden Tabelle zusammengefasst.

Baugruppe	Zustand	Bemerkung
Transverter-PCB	Fertig	Dokumentation s.u.
10MHz-Referenz mit 1656 MHz-LO	Fertig	Dokumentation s.u.
LO-Vervielfacher	Fertig	Dokumentation s.u.
1W-PA	Fertig	Prototyp aufgebaut
Sequencer	Fertig	Dokumentation s.u.
ZF-Umschaltung	Fertig	Dokumentation s.u.
Mechanik	in Umsetzung	Baugruppen auf Grundplatte montiert und verdrahtet, s.u.

Ein Pegelplan zur Planung und zur Berechnung der Gesamtrauschzahl wurde erstellt: pegelplan.xlsx

Mechanische Ausführung

Die ganze Baugruppe wird direkt am Spiegel montiert, es kommt ein 60cm-Cassegrain-Spiegel zum Einsatz. Die Montage der Elektronik geschieht auf einer Alu-Grundplatte. An der Vorderseite des Gehäuses ist es mit dem Spiegel verschraubt.

Die Befestigung an einem stabilen Fotostativ mit Zwei-Achsen-Verstellmöglichkeit geschieht an der Unterseite des Gehäuses, dabei wird die richtige Lage des Schwerpunkts beachtet. Die einzelnen Elektronikkomponenten sind vertikal auf der Grundplatte montiert und können so ohne großen Aufwand modulweise ausgetauscht werden.

Transverterbaugruppe

Das Kernstück des Transverters bilden die 3cm-Tansverter-Leiterplatten von VK3XDK. Die drei Transverterleiterplatten wurden modifiziert, um die leicht danebenliegenden Filter nachzustimmen. Der Abgleich erfolgte durch Cut-and-Try, leider gibt es kein "Patentrezept". Die von VK3XDK vorgeschlagene Methode (einen V-Keil in beide Ränder der Microstip-Elemente schneiden) hat sich am besten bewährt und wurde bei PCB 2 und 3 durchgeführt..

http://loetlabor-jena.de/

Printed on 2025/10/19 01:16

2025/10/19 01:16 3/7 10GHz-Transverter

Filter-Durchgangskurven:

Lieferzustand (alle ähnlich): RX-Zweig, TX-Zweig

PCB 1: RX-Zweig, TX-ZweigPCB 2: RX-Zweig, TX-Zweig

PCB 3: RX-Zweig, TX-Zweig

PCB 1:

- am 23.02.2016 in Betrieb genommen, alle Kabelverluste herauskalibriert
 - LO-Vervielfacher
 - 1 dBm @ 1656 MHz führen zu 8,8dBm @ 9936 MHz an beiden Ports, damit Speisung der TRV-PCB
 - ∘ TX-Zweig
 - 5 dB Conversion Gain (0 dBm @ 432 MHz → 5 dBm @ 10368 MHz)
 - Spiegelfrequenzunterdrückung min. 35 dB
 - LO-Unterdrückung min. 45 dB
 - RX-Zweig
 - 8,7 dB Conversion Gain (-80 dBm @ 10368 MHz → -71,3 dBm @ 432 MHz)
 - LO-Unterdrückung min. 30 dB
 - Spiegelfrequenzunterdrückung war nicht messbar, da RX-Input mangels 10 GHz-Generator aus dem TX-Output gespeist wurde

LO

An eine 10 MHz-Referenz wird ein 1656 MHz-Oszillator (Pout = 0-3 dBm) mittels PLL angebunden. Die 10 MHz-Referenz dafür ist ein OCXO Trimble 65256, der eine mehr als ausreichend stabile Referenzfrequenz zur Vefügung stellt.

Zu Anfang stand die Hypothese im Raum, dass die notwendige Frequenzgenauigkeit nur durch eine GPS-Anbindung erreicht werden kann. Die zu diesem Zweck entwickelte GPS-Referenz wird hier beschrieben. Im praktischen Einsatz stellte sich jedoch heraus, dass die GPS-Stabilisierung garnicht notwendig ist, weil der Trimble-Ofen schon eine enorm hohe Stabilität und Wiederholgenauigkeit bereitstellt, eine einmalige Kalibrierung am heimischen GPS-Normal ist vollkommen ausreichend und auf der Leiterplatte mit einem Potentiometer zu bewerkstelligen. Zum anderen müsste hoher Aufwand (thermische Isolierung, Kapselung...) getrieben werden, um die Kurzzeitstabilität des Systems nicht vom "schlechten" TCXO im GPS-Modul abhängig zu machen. Dazu kommt, dass durch den Digitalteil Spuriosi im Ausgangssignal auftreten, die einer sehr aufwendigen Filterung auf den Spannungsversorgungen bedürfen. Diese Erfahrungen festigten das Konzept dahingehend, dass auf die GPS-Stabilisierung zum Schluss verzichtet wurde und trotzdem nicht mit nennenswerten Frequezabweichungen im Feld zu rechnen ist.

Weitere Erfahrungen zeigten, dass der VCO auf 1656 MHz eine gute Anpassung am Ausgang benötigt, um zuverlässig mit der PLL zu arbeiten. Aus diesem Grund wurde ein 6dB-Pad am Ausgang realisiert und ein Zwischenverstärker mit AG604 (Gain ~17 dB) realisiert. Um passende Pegelverhältnisse für den folgenden Vervielfacher herzustellen, ist auch nach dem Verstärker ein 6db-Pad vorgesehen. Durch die Verstärkung dieser Anordnung hat man noch etwas Ansteuerreserve am LO-Vervielfacher für eventuelle Schwankung der Ausgangsleistung über den Betriebsspannungsbereich.

Die entstandene Hardware:

• Schaltplan

Eagle

•

PDF

Layout

Eagle

1

PDF

Phasenrauschen des 1656 MHz-Signals: VCO freilaufend, VCO PLL-gerastet, 10kHz
 Schleifenbandbreite

LO-Vervielfacher

Auch der Vervielfacher stammt aus der Feder von VK3XDK und erzeugt aus den 1656 MHz des LOs die Mischeransteuerung auf 9936 MHz. Der Vervielfacher wurde nach Aufbaubeschreibung aufgebaut und liefert die angegebene Ausgangsleistung (8-10 dBm) bei 0-3 dBm Ansteuerleistung. Die Anpassung am LO-Ausgang ist kritisch für das Erreichen der vollen Ausgangsleistung. Das Vervielfacher-Passband ist sehr genau getroffen. Eine LO-Frequenz von 1242 MHz statt 1656 MHz liefert bei der gleichen Ansteuerleistung etwa 10 dB weniger Leistung auf 9936 MHz.

RX/TX-Umschaltung auf 10 GHz-Seite

Vorhanden sind bistabile Radiall R570.432.010 Koax-Relais, die bis 18GHz spezifiziert sind. Sie verfügen über SMA-Buchsen und werden per Open-Kollektor-Stufe mit kurzen Pulsen angesteuert. Die Isolation von 60dB schützt den LNA vor Zerstörung.

ZF-Baugruppe

Auf der ZF-Baugruppe wird die RX-TX-Umschaltung mittels PIN-Dioden realisiert. Die geschalteten 8 V, die auch am Transverter gebraucht werden, werden hierfür genutzt. Im TX-Zweig realisiert ein Dämpfungsglied einstellbar 20..30 dB Abschwächung. Um weitere Verluste (Kabel zum TRX) auszugleichen gibt es im RX-Zweig einen ZF-Verstärker mit etwa 20 dB Verstärkung. Bei diesem Wert verschlechtert auch eine schlechte Rauschzahl des Empfängers (FT-817, >5dB) die Gesamtrauschzahl nicht mehr signifikant.

CAD-Files:

Schaltplan: Eagle, PDFLayout: Eagle, PDF

Sequencer

Zur RX/TX-Umschaltung der Einzelkomponenten wurde ein Sequencer entwickelt, herausgekommen ist eine Leiterplatte:

http://loetlabor-jena.de/

Version 1:

- Schaltplan Eagle, PDF
- Layout Eagle, PDF
- Software -

ZIP

Version 2:

- Changelog V2
 - Ungeroutete Leiterbahn am 3V3-Regler (behoben mit CuL-Draht)
 - Footprint für Klemmleiste falsch (viel zu klein)
 - o 7808 statt LM317, da Kühlfahne mit an Masse kann, Verlustleistung dort ist kritisch
 - Schutzdioden an den Relaiskontakten sind nicht vorgesehen
- Schaltplan Eagle, PDF
- Layout Eagle, PDF
- Software -

ZIP

Power on:

- TX inhibit an
- Spannung PA aus
- Spannung TX aus
- Spannung RX an
- · Relais: Empfang

Ablauf Wechsel RX \rightarrow TX (bei Erkennung von PTT):

- Spannung RX aus
- Relais: Senden
- Spannung TX an
- Spannung PA an
- TX inhibit aus

Ablauf Wechsel TX \rightarrow RX (bei Erkennung von PTT loslassen):

- TX inhibit an
- Spannung PA aus
- Spannung TX aus
- Relais: Empfangen
- Spannung RX an

1W-PA

Auf Grundlage eines breitbandigen PA-Modul für 6..10GHz (RFMA7185-S1) würde eine Endstufe für den Transverter gebaut.

Das Endstufenmodul braucht eine -5V Gatespannung und 8..10V Drainspannung, das Sequencing (zuerst Gatespannung anlegen, dann Drainspannung) ist zu beachten.

5dBm am Eingang führen zu 30dBm am Ausgang, somit direkt kompatibel zum Transverter. Für den Betrieb wird ein Kühlkörper benötigt, da 10W Verlustleistung entstehen. Zudem sinkt die Verstärkung bei erhöhter Betriebstemperatur. Betrieb mit Kühlkörper sorgt für Gehäusetemperaturen < 40°C nach 10min Dauerbetrieb.

Plot der Einschaltreihenfolge (grün negative Gatespannung, blau Drainspannung)

Die 500hm-Leitungen an Ein- und Ausgang sind mittels RO4003-Laminat (0.5mm) realisiert. Die Spannungsversorgung ist auf zweiseitigen FR4-Material geätzt. Die Rückseite dient als Groundplane.

• Schaltplan	
	Eagle
. Lavout	PDF
• Layout	Eagle
1	PDF

Zukünftig soll ein Richtkoppler am Ausgang als Leistungsindikator hinzugefügt werden.

Weitere Aufbauhinweise:

- Franco Rota I2FHW
- Tom DL1MFK

Lessons Learned

Allgemein

- Entwicklung und Aufbau jeder einzelnen Stufe für sich ist um Größenordnungen aufwendiger als der Aufbau eines gut dokumentierten Transverterbausatzes
 - o Die Lösung der vielen kleinen Detailprobleme nimmt viel Zeit in Anspruch
 - sinnvolle und einfache Abgleichmethoden müssen erst entwickelt werden
 - Der Lerneffekt ist dafür sehr groß
- durchdachtes mechanisches Konzept (alle Ebenen auf gleicher Größe, um Stapelbarkeit zu gewährleisten o.ä.) ist wichtig
- das Gesamtsystem ist nur so gut wie die Summe seiner Teile
- das Gesamtsystem ist nicht besser als die Summe seiner Teile

Transverter/Vervielfacher

- Es war eine gute Idee, die Transverter- und Vervielfacherleiterplatte fertig zu kaufen, diese auch selbst zu entwickeln (inkl. Prozesserprobung auf Rogers-Material usw.) wäre noch ein gutes Stück Arbeit mehr gewesen
- die dünnen Keramik-Leiterplatten sind nicht einfach zu handlen, wenn die SMA-Buchsen nicht an Grundplatten verschraubt sind, Bruchgefahr!
 - daher Flanschbuchsen nehmen und an einer Grundplatte verschrauben (Empfehlung)
 - die vielen Buchsen daran machen das Hantieren nicht gerade einfacher
 - viele Buchsen sind immer auch ein Kostenfaktor, man kann mit einem passenden Konzept auf einige davon verzichten und direkt dünnes Koaxialkabel anlöten

http://loetlabor-jena.de/

 Abgleich der Microstrip-Filter ist nicht einfach, es gibt kein Patentrezept für erfolgreichen Abgleich auf eine andere Frequenz

LO

- Auch die Entwicklung eines "einfachen" PLL-Oszillators mit fertigem VCO stellt keine einfache Aufgabe dar, wenn man sich Mindestanforderungen an Phasenrauschen und Nebenaussendungen setzt
 - Spannungsversorgungen sollten immer sauber abgeblockt sein
 - um eine zweite Iteration wird man selten herumkommen, wenn das Konzept nicht schon vollständig an anderer Stelle erprobt ist
- eine GPS-Stabilisierung stellt sich bei einem so stabilen Ofen und der Möglichkeit zur Kalibrierung an einer heimischen Referenz als nicht notwendig heraus

From:

http://loetlabor-jena.de/ - Lötlabor Jena

Permanent link:

http://loetlabor-jena.de/doku.php?id=projekte:3cmtrv:start&rev=1473250286

Last update: **2016/09/07 12:11**

