2025/11/08 02:44 1/3 Coax Waveguide Transition

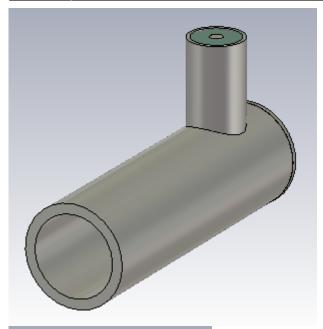
Coax Waveguide Transition

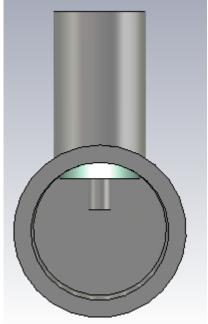
Um Hochfrequenzsignale in einen Hohlleiter einzukoppeln, werden Koax-Hohlleiter-Übergänge verwendet.

Eine solche Anordnung sieht für Rechteckhohlleiter wie folgt aus:

Quelle: Microwaves101

Im Folgenden soll ein Übergang für einen Rundhohlleiter simuliert werden.


Geometrie

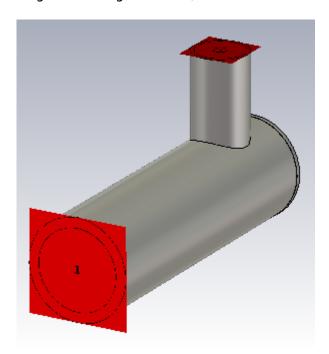

Der Übergang besteht zunächst aus 3 Komponenten:

- Rundhohlleiter mit den Innenradius R
- Einkopplung im Abstand \$\frac{\lambda_g}{4}\$
- Kurzschluss an einer HL-Seite

Die Einkopplung entspricht dabei einer Koax-Anordnung, dessen Maße einem handelsüblichen Koax-Stecker(SMA-Flansch) entnommen sind. Der Innenleiter ragt dabei ohne Dielektrikum \$\frac{\lambda}{4}\$ in den Hohlleiter hinein. Dieser Strahler ist \$\frac{\lambda_g}{4}\$ von der kurzgeschlossenen Seite entfernt. \$\lambda_g\$ ist die geführte Wellenlänge. Die Einkopplung erregt die TE11-Mode.

Dabei gilt:

Die Geometrie erfolgt parametrierbar:


Name /	Value
LO	(1 / freq)* c
Lc	1.706 * pipe_diameter
Lg	1 / ((((1 / L0)*(1 / L0))-((1 / Lc)*(1 / Lc)))^0.5)
С	299792458000
freq	2400000000
pipe_diameter	8
pipe_length	1.25*Lg
pipe_thickness	1
short_thickness	0.5

Printed on 2025/11/08 02:44 http://loetlabor-jena.de/

2025/11/08 02:44 3/3 Coax Waveguide Transition

Erregung

Es gibt 2 Waveguide-Ports, einmal an der Koax-Buchse und einmal am offenen Ende des Hohlleiters.

Ergebnisse

Noch nicht vorhanden. Es bestehen noch Simulationsprobleme. Oberhalb der Cut-Off-Frequenz besteht eine Rückflussdämpfung(S11) von \sim 0dB. Fehlersuche wird durchgeführt.

From:

http://loetlabor-jena.de/ - Lötlabor Jena

Permanent link:

http://loetlabor-jena.de/doku.php?id=projekte:cstmw:circular_waveguide&rev=1447340725

Last update: 2015/11/12 15:05

