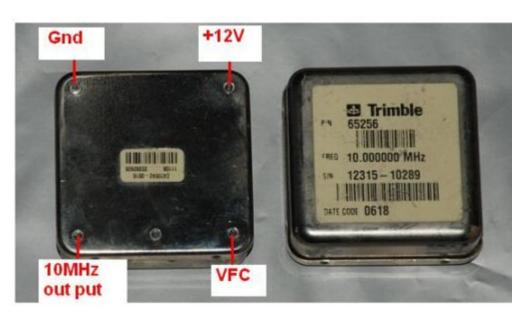
GPS-Disziplinierte 10MHz-Referenz

Beispielsweise für den Betrieb auf den GHz-Bändern ist eine genaue und stabile Frequenzreferenz von Vorteil. Für die Kurzzeitstabilität (im Bereich von einigen Sekunden) sorgt ein Quarzofen (OCXO), dessen Langzeitstabilität und Frequenzgenauigkeit durch Anbindung an GPS verbessert werden soll. Dadurch entsteht ein GPSDO (GPS disciplined Oscillator).

Dazu wurde bei eBay ein Trimble 65256 10MHz-OCXO erworben. Dieser ist doppelt geheizt und besticht mit portabeltauglichem Stromverbrauch: Nur etwa 2,5 Watt nach der Aufheizzeit.


Es werden mehrere Iterationen evaluiert: Einerseits die Verwendung einer Frequenzregelung (FLL), andererseits die einer Phasenregelschleife (PLL).

	GPS Dicsciplined Oscillator	
1	Mithilfe einer GPS-Anbindung wird die Langzeitstabilität und Frequenzgenauigkeit eines Quarzofens verbessert.	
er	Mitarbeiter	Stefan, DK3SB Sebastian, DL3YC Andreas, DL5CN

In

Bearbeitung

Status

Systemanforderungen

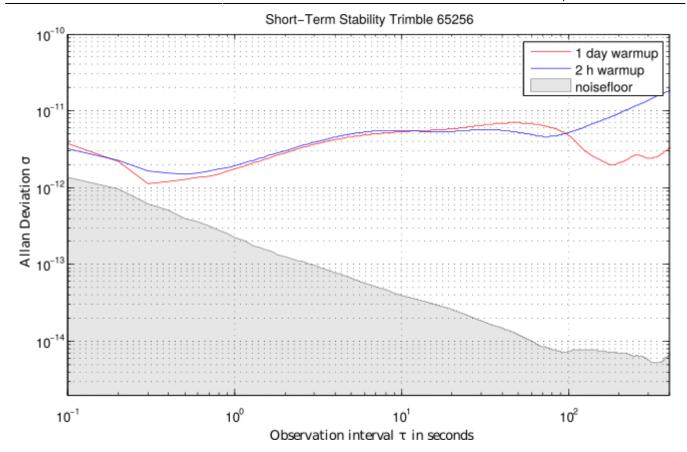
- geheizter Quarzoszillator mit hinreichend Kurzzeitstabilität
- Frequenzgenauigkeit durch GPS-Anbindung
- Anschluss für GPS-Antenne mit externem LNA
- Indikatoren für GPS-Lock und OCXO-Lock
- Versorgung aus 12..14V

Oszillator

Interna

Im Trimble 65256 ist ein OCXO Vectron MC2001X4-046W verbaut, zu dessen Familie es ein Datenblatt

gibt. Es geht nicht aus dem Datenblatt hervor, ob 5 V oder 12 V die richtige Betriebsspannung sind.



Die Außenbeschaltung realisiert einen zweiten Heizkreis. Neben dem OCXO sind dafür zwei N-Kanal-FETs MJG210T4G sowie ein NPN-Transistor MJD31C verbaut, außerdem ein MIC5205 als 3.3V-Regler (als Referenzspannung?), drei LMC7101-OPVs (für die Temperaturregelung), Dioden (als Temperatursensor) und etwas Hühnerfutter. Die Transistoren werden sehr warm, bei Stefans Exemplar verflüssigt sich das Lot des MDJ31C beim Aufheizvorgang, durch Betrieb "auf dem Rücken" lötete sich der Transistor aus, das führte zum Ausbleiben der 10 MHz.

Stabilität

Eine Messung der Kurzzeit-Stabilität zweier Oszillatoren gegeneinander wurde mit dem HERMES als Messgerät durchgeführt. Ein Vergleich von unterschiedlichen Aufwärmzeiten wurde angestellt.

http://loetlabor-jena.de/

Steilheit

Andreas, DL5CN, hat die Steilheit und den Einstellbereich der Vtune-Spannung mit einem vorhandenen GPS-Normal aufgenommen, seine Messergebnisse finden sich hier:

- 10,00000000 MHz bei 2,2 Volt,
- minus 1 Hertz bei ca. 1,55 Volt
- plus 1 Hertz bei ca. 2,93 Volt.
- Steilheit von ~1,5Hz/V

Die Messungen wurden an Stefans Ofen wiederholt und der gleiche Wert für die Steigung ermittelt. Die 10 MHz des Vergleichsofens wurden bei etwa bei 2,4 V erzeugt.

FLL-Ansatz

Der einfachste Ansatz ist der Aufbau einer Frequenzregelung. Dazu muss die Frequenz des Oszillators gezählt werden, während man für die Torzeiterzeugung die hochgenauen Sekundenpulse von GPS verwendet.

Umsetzung

Prinzipiell wird eine lange Torzeit (z.B. 20 Sekunden) zur direkten Zählung des 10 MHz-Ausgangs verwendet. Der gemessene Frequenzfehler wird danach zur Korrektur der Regelspannung verwendet. In der getesteten Implementierung wird ein MSP430 verwendet. Dieser besitzt ein asynchrones Gate an jedem Timer zur Frequenzzählung: Ein Timer des MSP430 wird im Capture-Modus verwendet,

welcher aus dem OCXO getaktet wird. Der Capture-Pin wird mit dem PPS-Signal des GPS-Moduls verbunden. Mit der ersten Flanke des 1PPS-Pins wird der Startwert des Zählers gespeichert, daraufhin werden 19 weitere PPS-Impulse ignoriert und beim 20ten Impuls der Endwert gespeichert.

Das Soll-Ergebnis der Zählung ist 10000000 Hz * 20 Sekunden = 20000000 Digits, was modulo 65536 (16 Bit-Zähler) den Wert 11520 ergibt. Der Zähler-Startwert muss vom Messergebnis abgezogen werden und die Differenz zum Sollwert (die Regelabweichung) wird zur Anpassung der Abstimmspannung verwendet. Da kein hochauflösender DAC verwendet werden sollte, wird eine hochfrequente PWM einfach stark tiefpassgefiltert und dann dem Abstimmeingang des OCXO zugeführt. Die Auswirkung der VTune-Änderung auf das Messergebnis wird durch eine Wartezeit von 2 Sekunden bis zur nächsten Messung ausgeblendet. Durch dieses Vorgehen stellt die Regelstrecke als Annäherung eine reine P-Strecke dar und lässt sich von einem I-Regler ohne Regelabweichung stabil regeln.

Elektronik

Ein Aufsatzboard für das MSP430FR5739 Launchpad wurde entworfen und wird im Lötlabor gefertigt. Enthalten sind ein GPS-Modul mit PPS-Ausgang, ein Komparator (LT1719) zur Sinus/Rechteck-Wandlung und ein Tiefpass für erste Versuche mit der VTune-Erzeugung.

- Schaltplan als PDF und Eagle-File
- Layout als PDF und Eagle-File

Software

Teile der Software wurden vom Ballontracker uTrak übernommen, v.a. die Ansteuerung des GPS-Moduls. Die Software wird in einem eigenen github-Repository gepflegt.

Prototyp

Am 16.09.2015 wurde der Prototyp in Betrieb genommen. Der implementierte I-Regler schwingt innerhalb von 4-5 Zyklen ein und stabilisiert die Frequenz zuverlässig auf 10 MHz +- 0,05 Hz. Für die meisten Aufgaben ist das hinreichend genau. Das Problem bei diesem Ansatz ist die endliche Auflösung des Zählers - eine zufällige "Drift" um plusminus 50 Hz auf 10 GHz (das entspricht 0,05 Hz bei 10 MHz) könnte im Betrieb störend sein. Eine weitere Verbesserung ist mit diesem Verfahren nur durch Vergrößerung der Torzeit realisierbar, dann passt die Regelzeitkonstante jedoch nicht mehr sinnvoll zur Stabilität des Oszillators und die Einschwingzeit wird zu groß. Aus diesem Grund wird der PLL-Ansatz weiter verfolgt.

PLL-Ansatz

Für den 10 GHz-Transverter wurde die Stabilisierung mittels einer PLL aufgebaut.

Die Hardware/Software-Unterlagen sind hier zu finden:

Schaltplan: Eagle, PDF

http://loetlabor-jena.de/ Printed on 2025/11/05 20:22

- Layout: Eagle, PDF
- Errata: GPS RX an P1.1 geroutet, 32kHz-Quarz hinzugefügt
- Sourcecode (MSP430 C-Code mit Makefile): ZIP

TODO aktualisieren der Schaltpläne

Nach Umsetzung der notwendigen Software konnte die PLL erfolgreich in Betrieb genommen werden. An Stefans Trimble-OCXO stellt sich mit GPS-Fix eine Abstimmspannung von 2,4V am OCXO ein.

Probleme

Schleifenfilter: Der Abstimmeingang des OCXO besitzt einen Eingangswiderstand um die 400 kOhm. Aus diesem Grund kann das Schleifenfilter keine hochohmigen Serienwiderstände enthalten.

Lock Detect: Das Digital Lock Detect (DLD) der 10 MHz-Schleife funktioniert in diesem Aufbau nicht. Ursache hierfür ist vermutlich der Leckstrom in den Abstimmpin des OCXO. Der Eingangswiderstand dort wurde zu etwa 400kOhm ermittelt. An 3V ergibt sich so ein Leckstrom von $I_l = 8 \mu A$. Zusammen mit dem Ladepumpenstrom von $I_p = 5 \mu A$ und der Phasenvergleicherfrequenz von 10 kHz ergibt sich eine statische Phasenverschiebung von:

 $Phase Error = \frac{I_I}{I_p} \cdot t_{PFD} = \frac{8 \mu A}{5 mA} \cdot 100 \mu s = 160 ns$

Und das ist deutlich über der 15ns-Grenze, die bei Digital Lock Detect detektiert wird. In AN-873 werden die Zusammenhänge erklärt. Statt des DLD wird der 10MHz-Clock detektiert und als Lock-Indikator verwendet.

Ergebnisse

Nachdem das GPS einen Fix hat, regelt sich die OCXO-Abstimmspannung auf 2,5 V ein. Die Phasenrauschmessungen mussten im Labor mangels GPS-Empfang mit einem Signalgenerator als 10kHz-Quelle durchgeführt werden.

 Phasenrauschen 10 MHz: 10kHz-Referenz Agilent 33500, OCXO freilaufend, OCXO PLL-gerastet, 100mHz Schleifenbandbreite

Gezeigt haben sich in der praktischen Anwendung vor allem zwei Effekte: Einerseits ist die Zeitkonstante der Taktnachregelung im GPS selbst sehr hoch, d.h. die 10 kHz aus dem GPS werden langsam nachgeregelt, es dauert bis zu einer Minute bis man auf der Endfrequenz angekommen ist. Andererseits ist die thermische Stabilität des GPS-Moduls um Größenordnungen schlechter als die des Ofens. Da dieses jedoch als Referenz dient schlagen sich thermische Frequenzänderungen direkt auf die Ausgangsfrequenz durch.

Um die Kurzzeitstabilität (und damit im weiteren Sinne die Genauigkeit) überhaupt sinnvoll verbessern zu können, muss das GPS-Modul thermisch auf jeden Fall von jeder Art schneller Temperaturänderungen isoliert werden. Ein besseres Konzept für einen GPSDO sollte vorsehen, die 10 MHz aus dem Ofen direkt als Systemtakt für GPS zu verwenden und diesen selbst nachzuführen.

Last update: 2018/10/20 21:12

Links

- http://www.dl4jal.eu/fnormal/fnormal.html
- http://www.ik0otg.net/index.php?option=com_content&view=article&id=53<emid=59&lang=en
- http://www.ke5fx.com/tbolt.htm
- Artikel über die Stabilität von Oszillatoren von Ulrich Bangert

From:

http://loetlabor-jena.de/ - Lötlabor Jena

Permanent link:

http://loetlabor-jena.de/doku.php?id=projekte:gpsdo:start&rev=1540069940

Last update: 2018/10/20 21:12

http://loetlabor-jena.de/ Printed on 2025/11/05 20:22