HPSDR-Nachbau

Ziel ist es ein **HPSDR Hermes**-Bausatz zusammenzustellen und diesen selbst zu bestücken und in Betrieb zu nehmen.

Projektmitglieder sind aktuell Gert DL5ARG, Stefan DK3SB und Sebastian DL3YC.

Projektseite von HPSDR: http://openhpsdr.org/hermes.php / http://openhpsdr.org/wiki/index.php?title=HERMES

Unterlagen

Schaltplan: TAPR Apache Labs

Das Layout ist nicht open source! Apache Labs hat es nicht freigegeben.

Aufbauinformationen: Hermes

Bausatz

Zusammengestellter Bausatz: BOM

Digikey-Warenkorb hier - 318,17€ Reichelt-Warenkorb hier - 20,48€

Mini-Circuits wurde bei eBay von einem rumänischen OM bestellt.

Die Leiterplatte kann von Apache Labs für nur 18\$ bezogen werden.

Anmerkungen

- Die BOM von Apache hat bei Unstimmimigkeiten zwischen BOM und Schaltplan Vorrang
- 1206er FBs nicht geeignet, Passende werden bei Conrad besorgt und bringt YC am 31.01 mit
- richtige Ethernetbuchse wurde mitbestellt(sehr teuer, aber passend)

Offene Fragen

- Für R113 wurden statt 56k (Schaltplan) Widerstände mit 63,4k (BOM) benutzt.
 - Wird auch so im Datanblatt empfohlen(Vermutung E12 vs. E96)
- C198 (47u) ist mechanisch zu klein (reicht nicht über beide Pads)
 - Lösung: Tantali 22u verwendet.

Aufbau

aktueller Stand: Alle Bauteile sind beschafft. Die Bestückung steht noch aus.

Hinweise

C37 und C77 sind auf der Platine fälschlicherweise als C229 und C228 bezeichnet. Beide werden mit je 33pF bestückt(wie im BOM).

Vorbereitungen

USB Blaster

Zur Inbetriebnahme wurden 2 USB-Blaster aufgebaut. Damit wird dann das FPGA mit Software versorgt.

Berechnung LM1117-ADJ

Als LDO für 12V wird ein LM1117 verwendet. Die notwendigen Widerstände sind

- R1 (Pin 1 Pin 2) = 475R ODER 1k ODER 825R
- R2 (Pin 1 GND) = 3k9 ODER 8k2 ODER 6k8
- erstere Bestückoption bevorzugt (0603 senkrecht, 0805 waagerecht)

Berechnet mit Formel aus Datenblatt und verifiziert mit LTspice.

Bestückung

Basteltagebuch Gert & Stefan

- 21.01.15 Stefan sortiert Bauteile und probiert die Leiterplatte aus
 - erste Teile der Stromversorgung montiert
- 28.01.15 erstes Treffen, Aufbau erster Teil der Stromversorgung (Schaltplan-Seite 5)
 - Gert hat einen Teil der verbleibenden Bauelemente mitgenommen
 - Stefan hat Seite 5 bis auf Kleinteile abgeschlossen
- 02.02.15 Stefan
 - Fertigstellung Stromversorgung (außer fehlende FBs)
 - Inbetriebnahme Linearregler

http://loetlabor-jena.de/ Printed on 2025/11/04 16:00

- Inbetriebnahmeprotokoll
- 03.05.15 Stefan
 - Bestückung aller 100nF, 10nF
- 18.02.15 Treffen mit Gert
 - o Inbetriebnahme SV Gert geht
 - Auflöten FPGA Stefan wird erkannt! Programmierung noch nicht möglich, 1k/10k fehlen noch

Basteltagebuch YC

J21 gebrückt, F2+F3 gebrückt, SW1 mit 2x Laborbuchsen 2mm bestückt

- 14.02.15
 - ∘ Fertigstellung Bestückung 5V-Schaltregler(R125=220k, R112=39k)
 - Bestückung aller 22R, 10k, 1k5(als 2k2), 1k, 2k2, 0R Widerstände(nicht zu bestücken: R131, R132, R133, R135, R136, R137)
 - Bestückung aller MC BE außer DAT-31
 - Bestückung aller roten LEDs
 - Bestückung aller Ferrite
 - Bestückung aller 100nF, 10nF, 1nF, 10uF, 1uF Kondensatoren
 - Fertigstellung Stromversorgung
 - Inbetriebnahme Linearregler:
 - Inbetriebnahmeprotokoll
- 15.02.15
 - Bestückung FPGA
 - Inbetriebnahme USB-Blaster
- 16.02.15
 - FPGA wird in Quartus erkannt
- 17.02.15
 - Oszillatoren und SPI-Flash bestückt
 - Test-Dateien(Programmierfiles und Quellcode) Quartus-Projekt
 - Mit HermesTest können die Oszillatoren(10MHz, 25MHz, 122,88MHz), der SPI-Flash(mit dem .jic-File) und die PLL getestet werden - es wird der VCXO phasenstarr mit dem 10MHz-Takt gekoppelt
- 20.02.15
 - alle QFN-Bauteile aufgelötet
- 21.02.15
 - fertig bestückt
 - Frontplatten gefräst Löcher für Power LED und Status LED fehlen noch
 - Netzwerk wird erkannt
- 22.02.15
 - Software-Inbetriebnahme → Hermes funktioniert!

Frontplatte

Sebastian hat Frontplatten gefräst. Dazu mussten nur Aussparungen für Netzwerk- und GPIO-Port gefräst werden, der Rest sind runde Löcher. Das Ergebnis darf hier bestaunt werden:

TODO

Last update: 2015/02/23 21:43

Inbetriebnahme

Zuerst muss Hermes.jic(**TODO: einfügen**) in das SPI-Flash gebrannt werden. Anschliessend erhöht sich der Stromverbrauch spürbar. Ist dies nicht der Fall, liegt ein Fehler vor

Windows

- 1. Microsoft .Net 4.0 Client installieren
- 2. PowerSDR mRX PS installieren
- 3. tftpd32 installieren
- 4. Firewall deaktivieren
- 5. tftpd32 DHCP-Server konfigurieren
 - o Nach Anstecken der Stromversorgung wird die IP von Hermes im Log angezeigt
- 6. PowerSDR starten
- 7. Unter Setup → Connection Type die IP eintragen, apply, OK
- 8. Power-Schalter oben links klicken
- 9. Fertig, die Spektrumsanzeige sollte "wackeln"

Hermes von DL3YC

Stromaufnahme bei 12V RX: 780mA Stromaufnahme bei 12V TX: 1100mA

Folgende maximale Ausgangsleistungen wurden gemessen(Drive=100):

Band	Ausgangsleistung
80m	26,1dBm
40m	26,0dBm
20m	26,6dBm
10m	26,6dBm
6m	22,5dBm

From:

http://loetlabor-jena.de/ - Lötlabor Jena

Permanent link:

http://loetlabor-jena.de/doku.php?id=projekte:hpsdr:start&rev=1424727783

Last update: 2015/02/23 21:43

http://loetlabor-jena.de/
Printed on 2025/11/04 16:00