2025/12/06 12:57 1/4 Hardware

Hardware

Stromversorgung

Um genug Strom zur Verfügung zu haben, werden 3 LiPo-Zellen in Serie verwendet. Es stehen damit 11,1V mit 820mAh zur Verfügung = 9,1Wh. Folgende Stromverbraucher sind vorhanden:

• Raspberry Pi: 2,3 W (100%)

2m-Sender: 4W (Duty Cycle 70%) = 2,8W
GPS-Modul: ? mA an 5V = ? W (100%) = ? W

• Peilsender 0,25 W

GPIOs am Raspberry Pi

Es wird belegt nach dem Pinout von P1 des Raspberry Pi Rev B.gpios.png. Die GPlOs sich nach eigenen Messungen (12.3.2014) ab dem Bootvorgang als hochohmige Eingänge geschalten.

HF-Aufbereitung

Zur Erzeugung der FM sollte zuerst ein digitaler GPIO-Ausgang des Raspberry Pi benutzt werden. Dieser Ansatz stellte sich aus zwei Gründen für nicht hinreichend heraus: Die Frequenzauflösung ist relativ grob und damit die Amplitudenauflösung bei so kleinem Hub wie im Amateurfunk schlecht. Andererseits ist das Spektrum durch die angewandten Techniken und die nicht vorhandene Filterung sehr unrein, Störungen auf dem gesamten Band wären nicht vermeidbar.

Das Spektrum bei unmoduliertem Träger: Bild. Aus diesem Grund wird der IQ-Modulator verwendet und der GPOCLK des Raspberry Pi sollte nur noch als LO-Frequenz dienen. Da sich dieser trotzdem nicht als spektral rein genug darstellt, wurde das Konzept erneut verbessert und die Takterzeugung nun von einem SiLabs SI570 durchgeführt, der per I2C an den Raspberry Pi angebunden ist.

Zusätzlich soll das Signal so verstärkt werden, dass eine Aussendung per Koaxialkabel-Antenne ausreichende Feldstärke produziert um es am Boden sicher empfangen zu können. Das soll mit einem Endstufenmodul realisiert werden.

Dazu wurde ein Pegelplan mit Datenblattwerten entwickelt. Dieser stellte sich als unzureichend heraus, weil die Verlustleistung im Endstufenmodul zu hoch war. Er wurde allerdings nie aktualisiert.

Filterung

Datenblatt Filter

Das verwendete Filter wird vor dem Verstärkermodul eingesetzt und hat folgende technische Daten:

• 272MT-1008A

Last update: 2014/05/11 12:06

> • Mittenfrequenz:145 MHz • 3-dB-Bandbreite: 1,2 MHz • Einfügedämpfung: 8 dB

Abmessungen 38,5 x 13,4 x 20,6 (LxBxH)

Die Daten aus dem Datenblatt wurden per Messung bestätigt: VNWA-Messung

Modulation

Hauptbestandteil der HF-Aufbereitung bilden die Erkenntnisse vom Projekt IQ-Modulator. Der Raspberry Pi erzeugt an einem GPIO (GPOCLK) mithilfe eines Fractional Dividers die LO-Frequenz im 2m-Bereich. Über eine l²S-Stereosoundkarte werden IQ-Basisbandsignale wiedergegeben. Die rechteckförmige LO-Frequenz durchläuft ein Filter, um die ungeradzahligen Oberwellen auszufiltern. Durch geschickte Wahl der Grundfrequenzen ist die Erzeugung eines sehr reinen Spektrums möglich. Weil die Soundkarte mit einer Samplerate von 192kHz arbeiten kann, können die FM-Signale um die LO-Frequenz +-96kHz verschoben werden.

Vorverstärker

Aufgebaut mit einem MAX2614 wurde ein kleiner Vorverstärker für den IQ-Mischer inbetriebgenommen. Dieser erzeugt nach dem IQ-Mischer ein ausreichend starkes Ansteuersignal für das Endstufenmodul.

Verstärker

Das Verstärkermodul wird nach Modulation und Filterung eingesetzt, um eine HF-Leistung von etwa 1 Watt zu erzeugen. Aus den Ergebnissen der berechneten Freiraumdämpfung dürften damit auch am Boden hohe Emffangsfeldstärken zu erwarten sein.

Datenblatt Verstärkermodul

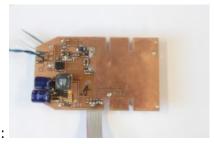
Die Ansteuerung mit 3,5V Gatespannung war ineffizient: Der Ruhestrom ist viel zu hoch. Es wurde umdimensioniert, sodass bei 2,7V mit 20mW Input etwa 1W Output Power verfügbar sind. Weder der Vorverstärker noch die Endstufe verschlechtern das Nebenaussendeverhalten (-40dBC). **Abschlussabgleich:** Mit IQ-Mischer, LNA, u. 2m-Filter wird bei Ug = 2,77V und Ud = 10,6V ca. 1W Ausgangsleistung erreicht.

PA-Modul und Vorverstärker funktionieren entsprechend ihrer Datenblattwerte.

Sendeantenne

Als Sendeantenne soll eine Koaxialantenne verwendet werden. In der Literatur findet man zahlreiche Hinweise, hier ein Link mit Dimensionierungsabmessungen. Hier geht es zum bebilderten Bauvorgang.

http://loetlabor-jena.de/ Printed on 2025/12/06 12:57 2025/12/06 12:57 3/4 Hardware


Kamera

Das Testbild aus 50cm Entfernung ist hier zu sehen.

Die fertigen Platinen

Ebene 1:

Ebene 3:

Peilsender

Der Peilsender arbeitet auf 70cm. Er ist als separate Einheit ausgeführt und wird in eine Aussparung der Leiterplatte von Ebene 1 eingefügt.

• Sendefrequenz: 430,780 MHz

Modulation : F3EKennung : Mike Oskar

Sendeleistung: 5 mW +- 5%
Betriebsspannung: 11,1V
Stromaufnahme: 25mA

Die Peilsenderplatine wird in einer isolierenden Tasche zwischen Ebene1 und Ebene2 untergebracht. Als Tasche kann ein EMV-Beutel oder eine angefertigte Tasche aus KAPTON-Folie dienen.

EMV-Messung

Messung Raspberry Pi in GTEM-Zelle

From:

http://loetlabor-jena.de/ - Lötlabor Jena

Permanent link:

http://loetlabor-jena.de/doku.php?id=projekte:xplorer:hardware&rev=1399810013

Last update: 2014/05/11 12:06

http://loetlabor-jena.de/ Printed on 2025/12/06 12:57