2025/11/06 23:44 1/4 Mechanische Konstruktion

Mechanische Konstruktion

Ebenen

Die Nutzlast besteht aus 3 Ebenen, die jeweils beidseitig verwendet werden. Die mechanische Verbindung zwischen den Ebenen geschieht durch hohle Edelstahlstäbe, passend zu den vorhandenen Löchern im Raspberry Pi. Die Ebenen werden mit straffen O-Ringen auf den Stäben fixiert, so bleibt das System dynamisch.

Konzeptentscheidung war es, starr verbundene Ebenen zu entwickeln, statt steckbare Module zu benutzen. Die Verkabelung zwischen den Ebenen wird zwar auf ein Minimum reduziert, aber fest verlötet ausgeführt. Einziger Steckverbinder soll am Ende der Akku sein, Montieren und anstecken desselben gehört zur Inbetriebnahmeroutine.

Die erste Idee zum Ebenenmodell wurde in dieser Skizze festgehalten. xplorer25 a1.pdf

Ebene 1

Die Unterseite ist gleichzeitig die Bestückungsseite. Das HELIX-Filter wird liegend angeordnet.

Unterseite:

- LEDs für Statusanzeige
- Temperatursensor
- Drucksensor
- HF-Elektronik
- Antennenanschluss

Schnittstelle:

- 12V Stromversorgung
- Raspberry Pi-Pinleiste

Ebene 2

Raspberry Pi auf dem Kopf liegend.

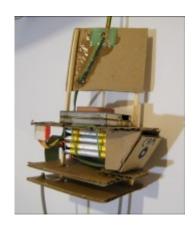
Ebene 3

Oberseite:

• GPS-Modul

Unterseite:

Schaltregler 5V


Kopfschusselektronik

Die Befestigung der Kamera passiert mit zwei Drahtbügeln an Ebene 3. Es gibt keinen elektrischen Kontakt mit der Kamera! Der Kameraöffnungswinkel von ~45° muss bei der Befestigung berücksichtigt werden.

cam modul mount.jpg3

Pappmodell

Es wurde versucht, mit dem Modell so nahe wie möglich an die spätere Ausführung heranzukommen. Das Modell dient dazu, konstruktive Details und Notwendigkeiten darzustellen.

Der Abstand von Ebene 1 zum Raspberry Pi ist implizit durch die Höhe der Stiftleiste festgelegt. Die Größe der Akkus bestimmt den Abstand vom Raspberry Pi zur Ebene 3. Zwischen Ebene 2 und 3 wird der Peilsender befestigt. Die 5V-Erzeugung für den Raspberry Pi erfolgt direkt neben dem Akku durch ein aufgeklebtes Spannungsregler-Modul.

Hier in kompletter Ausführung mit Abtrenneinheit und Fallschirm

Die Nutzlast ist mit dem Fallschirm durch ein tragfähiges dreiadriges Flachkabel und 4 Stricke verbunden. Das Kabel führt weiter zum oberen Ende des Fallschirmes, wo die Abtrenneinheit angebracht ist. Die abzutrennene Schnur zur Ballonhülle führt durch die Abtrenneinheit. Nach

http://loetlabor-jena.de/ Printed on 2025/11/06 23:44

2025/11/06 23:44 3/4 Mechanische Konstruktion

abgelaufener Missionszeit wird die Ballonschnur abgetrennt. Da der Fallschirm am obersten Punkt mit der Abtrenneinheit verbunden ist, befindet sich der Fallschirm schon in seiner Funktionsposition und kann sich nach dem Abtrennen direkt entfalten.

Ballonhülle

Ballonhüllen können von der Firma HIM (Link) bezogen werden. Üblicherweise sind die Kosten und Stückzahlen auf 100 Stück gezogen. Herr Peters, der Geschäftsführer, ist mobil unter 0174 3182482 zu erreichen.

Anfang Februar erhielten wir zwei kostenlose Ballonhüllen von Herr Peters. Sein Angebot von wurde an den DARC-Vorsitzenden weitergeleitet.

Erster Testaufbau

Am 20.3.2014 wurde der Testaufbau das erste mal zusammengesteckt, die mechanischen Eigenschaften der Einzelebenen passten gut zueinander.

Nutzlast und deren Einzelmassen

Baugruppe	Masse [g]	Bemerkung
LiPO-Akkupack mit Stecker	48	3 Zellen
RaspberryPl (original)	39	
RaspberryPl mit Siftleiste-Stecker entfernt	24	nur P1,S2,S3,S5 vorhanden
Kamera für RaspberryPl	3	inkl. Flexkabel
HF-Platine komplett ohne Antennen		
Antennen		

Last update:	2014/03/2
18.16	

Baugruppe	Masse [g]	Bemerkung
GPS-Empfänger	30	mit Metallgehäuse ohne Kabel
Peilsender	11	
LiPo + Raspi + Kamera + GPS	105	
Kleinteile		
Nutzlast unverkleidet		
Nutzlast verkleidet		
Abtrenneinheit		
Nutzlastmodell	153	
Nutzlastaufbau, HF-Ebene, Aluplatte, Raspi, Akku, GPS-Platine (ohne GPS)	150	
Nutzlast + Abtrenneinheit		
Nutzlast+Abtrenneinheit+Fallschirm		
Nutzlast+Abtrenneinheit+Fallschirm+Ballonhülle		
Helix-Filter	20	

Abmessungen diverser Bauteile

• GPS-Maus: 50x40x11+23

• Peilsender (inkl. Beutel): 46x48x8

• Spannungs-Modul: 19×23

http://loetlabor-jena.de/ - Lötlabor Jena

Permanent link:

http://loetlabor-jena.de/doku.php?id=projekte:xplorer:mechanik&rev=1395944160

Last update: 2014/03/27 18:16

http://loetlabor-jena.de/ Printed on 2025/11/06 23:44