Rotorsteuerungsgerät

Bei Stefan findet sich schon seit längerem ein Azimuth-Rotor mit ausgeschlachtetem Steuergerät. Es sollte früher mal eine sehr aufwendige Steuerung dafür entstehen. Außerdem gibt es seit neuestem einen Elevationsrotor. Nun sollen beide Komponenten steuerbar und fernsteuerbar werden, um dann in den produktiven Einsatz gehen zu können.

_	Rotorsteuer	ung
	Auf Grundlage vorhandener Komponenten wird eine Azimuth- /Elevations-Anlage für Sat- Tracking usw. aufgebaut	
	Mitarbeiter	Stefan, DK3SB
	Status	in Vorbereitung

Azimuthrotor

Der Rotor ist unbekannten Fabrikates und hatte früher ein Steuergerät auf Grundlage zweier Syncronmotoren (einer im Rotor, einer im Steuergerät). Daher entfiel eine Positionsrückmeldung. Rolf, DL2ARH, befestigte innen ein 10-Gang-Potentiometer, um die Position erfassen zu können und ein neues Steuergerät zu konstruieren. Ein passendes Steuergerät ist zu bauen.

Die Features sollten sich auf Links-/Rechtsdrehen und eine Winkelanzeige beschränken. Der vorhandene Trafo (+-24V, mit Mittenanzapfung und Phasenschieberkondensator für den Motor) soll weiterverwendet werden. Der Aufbau eines Minimal-Steuergerätes (Opamp-Schaltung, Zeigerinstrument, zwei Taster) wird aktuell in Betracht gezogen.

Da die Steuerung per PC möglich sein soll, ist ein Ausgang der aufbereiteten Poti-Spannung und die Schaltkontakte für den Motor vorzusehen.

Positionmeldung

Erinnerung: Eingebaut ist eine Z-Diode, die die Spannung stabilisiert. Rot = 13,8V, Blau = GND, Grün = Schleifer

Position	Ugrün-blau
0°	4,93 V
90°	5,6 V
180°	6,35 V
270°	7,06 V
360°	7,79 V

Offsetspannung 4,93V, Spannungsdifferenz bei 360° 2,86V. Spannung zu Position ebenfalls linear. Subtrahierer und Verstärker (>1) notwendig, um auf 0..5V anzupassen.

Elevationsrotor

Der KR-500 ist Einsatzfertig, muss aber für eine Steuerung per PC noch modifiziert werden: Eine Buchse mit aufbereiteter Poti-Spannung sowie den Schaltkontakten ist hinzuzufügen → Wiederverwendung von Teilen aus dem Az-Steuergerät.

Messung der Potispannung

Spannung zwischen 1 und 3 beträgt 6,2V bei 0°, 6,13V bei 180°.

Position	U2-3
0°	0,05V
22,5°	0,704V
45°	1,423V
67,5°	2,15V
90°	2,87V
112,5°	3,6V
135°	4,3V
157,5°	5,02V
180°	5,73V

Erwartungsgemäß linearer Zusammenhang (Poti an guter Spannungsstabilisierung) - muss auf 0..5V skaliert werden.

PC-Steuerung

Die PC-Schnittstelle mit digitaler Anzeige gibt es bereits, könnte zum Beispiel nach diesem Aufbau nachgebaut werden: http://blog.radioartisan.com/yaesu-rotator-computer-serial-interface/

Belegung Interface

Stecker: D-SUB 9-Pin - im Rotorsteuergerät sind Buchsen eingebaut.

Pin	Belegung
1	CW / UP (pull to GND)
2	CCW / DOWN (pull to GND)
3	Poti-Spannung AZ/EL
4	-
5	-
6	GND
7	GND
8	GND
9	GND

From:

https://loetlabor-jena.de/ - Lötlabor Jena

Permanent link:

https://loetlabor-jena.de/doku.php?id=projekte:rotorctl:start&rev=1435497839

Last update: 2015/06/28 13:23

https://loetlabor-jena.de/ Printed on 2024/05/05 07:43